

Can Al be Agriculture's Great Equalizer?

A qualitative study by Syngenta Group & IPSOS

01

Introduction,
Objectives & Design

02

Key findings

03

Appendix

Artificial Intelligence, or AI and digital tools are revolutionizing farming and sustainable practices."

Jeff Rowe

CEO of Syngenta Group

Objectives & Design

Research objectives of the study

1

Explore barriers and adoption of Al

Identify **the barriers and drivers** for AI usage: societal, technological, educational, financial, environmental.

Identify expectations to create a **framework of desirability** across AI.

Identify nature, role and agendas of **accelerators** of change.

2

Provide ideas to accelerate Al

Help define metrics to monitor the future progress toward Al equity goals.

Explore ideas for making AI tools more accessible across different contexts.

Methodology: the qualitative interviews

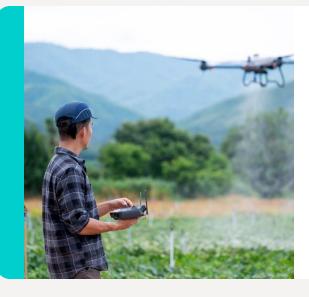
Individual qualitative interviews with farmers and experts: 15 interviews per market, 75 in total, with the following sample structure.

Size definition

Split of the farmers per size of the farm				
	Small farmer	Medium farmer	Large farmer	Total per country
Brazil	4	4	4	12
China	4	4	4	12
France	2	3	7	12
India	4	4	4	12
USA	2	6	4	12
Fieldwork total	16	21	23	60

Split of the experts per background					
·	Commercial	NGO	Academic	Government	Total per country
Brazil	2	0	1	0	3
China	0	0	1	2	3
France	2	0	0	1	3
India	2	1	0	1	4
USA	3	0	0	0	3
Fieldwork total	9	1	2	4	16

Key Findings



01

The Digital Divide is real, but based on more than just farm size

02

Al farming feels distant and alien to many farmers

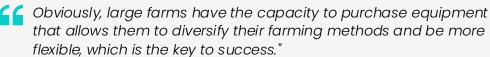
03

Overcome barriers by providing tangible value, and thinking local

01

The Digital Divide is real, but based on more than just farm size

As expected, farm size is important – large farms are more likely to adopt digital/Al



Large farms are more likely to adopt AI and digital farming tools because:

- They have more resources/greater investment capacity.
- Greater need for efficiency.
- And can better justify the investment, both in infrastructure and in software and platforms.

In India for example, large farms see digital farming:

- As a way to replace labor, ensure top-quality output.
- And professionalize farming into a business both on-field (automation, precision) and off-field (market linkages, exports).

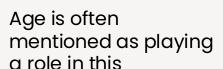
- Expert, France

Small farms, on the other hand:

- May not see enough return on investment.
- May lack the scale to benefit as much from these technologies.
- Have less capacity to be able to invest the **money and time** to adopt Al.

f It will indeed make some farms much more efficient than others that don't embrace AI. Perhaps some of the available resources aren't accessible to small producers due to cost. But it will make a difference."

- Expert, Brazil



However, attitude to the digital world also has a major impact

Those who are more comfortable and familiar with the digital world will naturally be more accepting of digital/Al solutions. Farming is a tough world and trying new things, particularly where it is out of their comfort zone/what they are familiar with, presents a risk, and requires greater reassurance.

For example, in the US, younger farmers are often more open to adopting digital tools and Al. In contrast, older farmers are often less willing to try new technologies, preferring traditional methods and sometimes lacking the skillset or interest to learn new digital systems.

Education

Social factors

In India, some farmers have low trust in digital solutions due to lack of human involvement. They have doubts about the effectiveness of technology when it is not widely adopted around them. This is especially among small and marginal farmers who work hard but earn little - mental fatigue limits their willingness to explore new approaches.

In Brazil, those with a more innovative mindset seek solutions to optimize production, reduce costs, and increase competitiveness. They tend to view technology as a differentiator, not as a cost or a risk (often younger farmers or the ones supported by younger people such as their kids).

Other factors can also play role:

Attitudes to farming

In many markets, still prevalent faith in the tried and trusted methods, and farmers are somewhat reserved and resistant to change.

- In France, where a small number were resistant to trying new methods vs existing techniques.
- In India, smaller farmers tend to have a traditional and cautious mindset, and follow what neighboring farms are doing. They have a strong reliance on age-old practices, especially in crop selection and farming methods.
- In China, more traditional farmers are likely to have inherited the family business – they are less adventurous and simply adapting with time and aiming to stay up-to-date.

Infrastructure

Location can minimize availability, depending on the infrastructure available. Al requires good field connectivity, and in Brazil, producers in areas with stable internet access have a lower barrier to entry.

On the contrary, in India, more remote areas can have problems accessing both the internet and even electricity can be an issue.

[Infrastructure for digital farming is not ready – most things are done manually - problem of electricity, internet in interiors, tech background; it's not just about downloading an app but about learning and installing provisions for all these things."

- Small Farmer, India

Finally, there can also be public governance issues

It is evident in China, agricultural policies play a significant role in sector development.

for the gap will widen, as large farms have greater access to more advanced and reliable technologies. From the perspective of technology dissemination, it is certain that it starts with large-scale farmers and then spreads to small-scale farmers, so large-scale farmers have a stronger willingness to accept."

- Expert, China

In many countries, especially India and Brazil, there is an issue with a lack of understanding of AI amongst government workers who provide farmers with support. They are trusted but not knowledgeable.

In France, regulatory constraints (use of plant protection products, withdrawal of products without any real alternative) are diverting farmers' energy and adding an additional burden.

Attitude to technology

Broadly speaking, farmers fall into 4 categories

Farm Size

Digital followers

- Likely to have adopted digital tech/advanced machinery as more obvious benefits to them.
- But perhaps more likely to be left behind by the AI revolution.

Digital pioneers

- Tend to be more digitally advanced.
- Easier to access digital/ Al and more obvious opportunities to benefit.

Reluctant resisters

- Most wedded to their tried and trusted methods.
- · Suspicious of new technology and often lack capital, education and inclination to find out more.

Enthusiastic strivers

- Wanting to adopt new technology/AI but having difficulty accessing.
- Open to outside support.

02

Digital is aspirational and advancing, but Al farming feels distant and alien to many farmers

In most markets, it's a technology used for better agricultural management and production optimization, through machinery, devices, and softwarebeing able to process and gather data to help them make more informed decisions as key in digital farming.

- It's almost synonymous with Precision Agriculture, which uses GPS and drones to make things happen.
- Growers do mention some challenges here of integration across platforms, data privacy and how to understand the true value of digital tools.
- Digital agriculture is often a familiar tool, integrated into practices, especially in more prosperous markets; but in France, farmers mention its introduction being driven by administrative and regulatory requirements.

India seems to have a basic understanding of Digital farming at this stage:

- Digital Farming = Machines That Reduce Labor.
- Most farmers equated digital farming with machines and physical tools.

Whereas "AI" in agriculture still seems a way off for most farmers - it is a very abstract concept.

Perceptions range from:

- Completely alien/unknown/quite fearful, through to
- Curiosity, intriguing, but wanting to wait and see/learn about it.

Even in China, there is little awareness and understanding about what Al farming is – it is something being explored in the Pioneer farms/academia.

There are also a number of fears/potential concerns:

- Losing control
- How much can they **trust** it?
- What happens to their data/ who controls it/sees it/owns it?

- Expert, China

[I'm a naturally skeptical person but always open to new technologies. I'll let some people test it first, the ones who are more curious, then I'll go."

- Farmer, Brazil

The adoption of digital farming is a natural evolution with clear potential benefits for farmers

Digital farming to better analyze and monitor soil conditions, climate, plant health, and other relevant factors to make more assertive decisions, reducing waste and production costs.

It helps us make decisions, it helps us work more efficiently, it's useful to us today, and I think we'll continue to use it, and it does help us in our decision-making."

- Farmer, France

Digital farming allows for more precise control over all stages of production, as well as process optimization and task automation, freeing up time for other activities.

The first year I used GPS to apply agricultural pesticides, I saved 8% on pesticides. This led us to look for other technologies combined with our experience."

- Farmer, Brazil

Digital farming for data-driven decision-making combined with farmers' expertise, resulting in better decisions.

We can synchronize our planter to our satellite, and it can tell us, okay, over here we want to plant a certain hybrid. Over here we want to plant a different hybrid, because it's going to perform better."

- Farmer, US

Digital farming as a natural path of evolution that promotes a sense of belonging among farmers.

And if we don't invest, don't improve, don't engage in some technology segment, we won't be able to keep up."

- Farmer, Brazil

Digital farming is widespread, but sometimes only at a basic level

More sophisticated digital farming seems most prevalent in the US and France, and less so in China (outside of their experimental farms) and especially India.

Technology	Key benefits and issues	
Auto-Steer, GPS Guidance - machines with precision agriculture technology	Saves money on seed, fertilizer, and chemicals - especially on large acreages, reduces operator fatigue and make long days easier.	Costs for both machinery and usage subscriptions. Learning curve. Data transfer and integration difficult.
Drones & Imagery	 Enables targeted scouting, early detection of issues, and more precise application. 	 Cost of hardware and software. Limited by connectivity or weather.
Irrigation technology	 Increased productivity. Substantial water savings and climate risk management. 	Complexity of the technology-not intuitive.
Weather Apps & Decision Support Tools	 Greater productivity – real- time, local weather information allows farmer to plan field work. 	Reliability of forecasts.
Monitoring crop health	 Cost reduction through product savings, pest and disease traceability. 	No major issues mentioned.
Yield Monitoring, Mapping & VRT (Variable Rate Technology), Fertilization management	Higher yields and lower costs.	Data overload. Learning curve for software. Lacking actionable insights. Integration between brands.
Mapping – soil characteristics	 Productivity gains and savings generated by adjusting the volumes applied. 	Time/cost/difficulty of training.
Cloud Based Farm Management Platforms	 Supports record-keeping, compliance, and decision-making. 	 Costs. Data privacy Limited actionable insights. User-friendliness.
See & Spray and Other Camera Based Technologies (US)	 Reduces input costs. Increases efficiency. Environmental impact. 	 High cost. Proprietary systems.

Less sophisticated

High level of sophistication

Despite negative preconceptions, farmers still believe that AI could be helpful in the future

Overall benefits of Al

- Bring more knowledge and deeper insights.
- Improve crop management decisions, help select better seeds (a current pain point).
- Analyze variables (soil, weather forecast, area history) and recommend the most resilient crop variety/seeds for that specific scenario.
- Increase knowledge and autonomy, reducing dependence on the paid services of an agronomist.
- Manage farms remotely and help upgrade them to fully autonomous operations.

Operational improvement

- Help make better decisions.
- Potential cost reduction.
- More advanced **profitability and sustainability** for the farm.
- · Predictive power to reduce losses, especially those related to climate and raw material/supplies performance.
- Make the family business more scalable and less physically demanding.
- · Solve the succession problem by aligning the agricultural profession with the skills and lifestyle expectations of the younger, digitally native generation.

Emotional benefits

- More **freedom**.
- Feeling ahead of others or aligning with current demands.
- Being an example of transformation for peers.
- More **independence**, without losing control of the farm.
- **Pride** stemming from more sustainable/advanced practices.

Yet, at this stage, more of an ideal than a foreseeable future.

The main drivers for use of digital/AI farming focus on profitability, but it could have wider benefits too

Optimising inputs - to increase profitability

- Greater precision in inputs based on crop needs and units already applied in the form of manure/fertilizer/water, etc.
- · Reducing operating costs in products and mechanization, particularly with regard to fertilizer prices and, more broadly, protection products.

Practical benefits for the farmer

- Greater comfort at work, less fatigue for the farmer.
- Time savings.

Compliance and regulation

- In response to/compliance with regulations governing nitrogen application rates (especially France).
- Also meeting supplier requirements for traceability/provenance-potentially opens up new markets (especially in India and China).
- And to a lesser extent... reducing environmental impact.

Emotional rewards?

- Mentioned particularly in China, but there might also be an emotional benefit/reward for implementing AI/ digital farming, especially for the 'Pioneer' farmers' and Advisors, who take a more business-focused approach to farming.
- Empowerment & creativity: a commander at the head of a "machinery troop", controlling a whole system by simple remote control; a **powerful influencer and leader**, serving as an example and paving the way for his peers; a creator finding innovative solutions to grow.

Carried Decisions that are economical... I think the cost of the application is quickly recouped in the savings we can make on a daily basis, at the end of the sprayer, in the price of fertilizers." - Farmer, France

AI could be more easily implemented if...

It combines simplicity, clear and tangible benefits at an affordable price, both for initial purchase and on-going running costs.

A simple solution, which adapts to their machines and daily operations, and can be operated remotely via a cell phone.

Management of the entire farm, including finance, administration, human resources, and machinery.

Better monitoring and damage prevention.

Automation and reduction of labor.

For a minimal upfront cost, but with monthly maintenance installments.

Increased productivity and profitability.

Currently it gives vague information – it should feel like a personalized experience based on what crops I grow it should interact with me, like a virtual farming consultant."

- Farmer, India

Overcoming barriers by proving tangible value, and thinking local

There are a range of structural, financial and conceptual BARRIERS to AI

Lack of Knowledge

A widespread lack of digital understanding, with many simply not knowing what Al is in their field of activity/agriculture, what it does, or where to begin learning about it. Many end up turning away, considering it useless on their farms. Difficulty in adapting to the technology, are significant barriers, especially for older people. Fear of the unknown. The complexity of current solutions can be a major limiting factor.

High (and ongoing) costs

Everything involving technology in this field is expensive and isn't a one-time investment, technology comes with recurring subscription costs, for example, which weigh on the budget.

Workforce

Barriers already faced with simpler technologies are the same ones projected for Al: the lack of qualified personnel dedicated to learning and operating new platforms. Digital/Al farming requires skilled people to operate it and extract its full potential, but there is currently a shortage of it (and when it exists, they are not engaged).

Data Privacy/ Security

There's an overload of information, but nothing that provides the necessary security to invest. There are also concerns that the data they are providing might be used against them in some way – by suppliers (fixing prices)/ the govt (raising taxes, etc.)

For some, while concerns about data privacy are real, they're viewed with a certain fatalism: "there's nothing safe anymore," the data is already available anyway.

Infrastructure

The lack of infrastructure and connectivity in some rural areas still needs to be overcome (esp. India, China, Brazil).

Also functional issues: providing systems that work in the local language/dialect.

Trust

Many farmers – perhaps especially smaller farmers/those less educated experience problems with/find it difficult to trust - suppliers/ advisors... being sold supplies/equipment, etc. that are focused on profits for the supplier more than being best for their needs.

Lack of role models

Seeing the new technology working amongst similar farms, ideally in their local area, is arguably the most effective means of raising awareness and boosting take-up.

Farmers are very conscious of not being left behind/missing out.

Overcoming these barriers: requires raising awareness and knowledge about technologies and facilitating access to them, through numerous local agents willing to help farmers

Raising awareness, facilitating access, for instance by accessing free services through apps.

Deploying trials and demonstrations

Private companies should take steps to better promote and implement Al-producers need to see it to believe it.

- Seeing: For example, by offering products with embedded technology for a trial period.
 Farmers the technology working in their <u>local area</u> is a potentially powerful motivator, overcoming key concerns.
- People better equipped to present the technology and provide after-sales support (it's no use just presenting, selling, and not following up).

Leveraging social media

Is a key channel to help promote AI and raise awareness, perfectly suited for **demonstrating use cases** and providing simple examples of how AI can help farmers.

Liaising with trusted government and bodies, such as cooperatives, to solve the Trust vs Knowledge paradox:

- Manufacturers and private suppliers provide some support, and are savvy, but trust varies.
- Government experts are trusted to be impartial, but often lacking knowledge in Al.

Fundamentally, AI needs to prove itself: Practical gains first, digital dreams later

That AI is effective and genuinely works

Trust and Tangibility are non-negotiable. Farmers trust what they can see working instantly (e.g., fuel-theft IoT, Plantix app in India) or advice coming from someone superior or expert.

The abstract nature of AI means there's a risk of the tool being guided by flawed premises and scientifically inconsistent narratives versus being based on solid, proven agronomic science.

Does it just sound good, or does it work in the real world?

That it is effective vs human resources

A resistant mentality among many producers. Older farmers, especially, are so confident in their ability to manage the land that they have difficulty imagining a machine capable of replicating the complex, multivariate diagnostic processes required in agriculture.

Al, for me, there is no return on investment, so no. If it's to replace something I'm capable of doing without it, I don't see the point."

- Farmer, China

Countering: "It's not designed for me"

There's a belief that Al isn't designed for all farm types/sizes. The most advanced technologies, like fully autonomous machines, as being exclusively for 'large-scale farmers' with vast, uniform fields, not for a 'small farmers' with smaller, more varied plots of land.

This is often reinforced by a lack of focus from salespeople/experts.

Appendix

Digital Technology Use

Digital farming is widespread, but sometimes only at a basic level. Any AI often comes as a by-product through existing machines, platforms and software

	How/why they use it	Benefits	Issues
Auto-Steer, GPS Guidance - machines with precision agriculture technology	 Used for planting, spraying, and harvesting to reduce overlap, improve accuracy, and automate steering e.g., John Deere, Case IH, Ag Leader, and Trimble systems. Recommendation from trusted growers or dealers, and proven ROI. 	 Recues overlap and input waste, saving money on seed, fertilizer, and chemicals. Offers efficiency and productivity, especially on large acreages, also reduces operator fatigue and make long days easier. 	 Costs for both machinery and usage subscriptions. Learning curve. Challenges with full utilization on smaller acreages. Some systems are proprietary, making data transfer and integration difficult.
Drones & Imagery	 Drones used for crop scouting, imagery, and even application of seed or chemicals e.g., PerfctFly (Brazil). Satellite and aerial imagery used for field health monitoring and identifying problem areas. 	 Enables targeted scouting, early detection of issues, and more precise application. Motivated by cost-share programs or discounts from ag retailers. Interest in new technology and seeing neighbors use it. 	 Cost of hardware and software. Learning curve. Limited by connectivity or weather.
Irrigation technology/ AI drive platform	 Irrigation technology – more typically digitally controlled, but some examples of Al-driven irrigation platform. H2O (Valley) (Brazil). Word of mouth from a neighboring farmer. 	 Increased productivity and risk mitigation (by applying the right amount of water). Substantial water savings and climate risk management. 	Complexity of the technology -not intuitive and required a significant investment of time to understand; high monthly costs.
Weather Apps & Decision Support Tools	 Used for planning field operations and risk management. Some apps recommended by other growers or ag retailers. Can be linked in with irrigation systems on same platform (not smart tech). 	 Greater productivity - real-time, local weather information allows farmer to plan field work. Ease of use and low (or no) cost. 	 Reliability of forecasts. Sometimes subscription costs.

	How/why they use it	Benefits	Issues
Monitoring crop health	 Tools for monitoring crop health, identifying pests and diseases. Data is collected by field technicians using tablets and, after being processed at headquarters, enables treatment decisions. CropWise/Syngenta Protector (Brazil). 	Cost reduction through localized applications (product savings), pest and disease traceability.	No major issues mentioned.
Yield Monitoring, Mapping & VRT (Variable Rate Technology), Fertilization management	Yield monitors and mapping software (e.g., Ag Leader, Climate FieldView, Precision Planting 2020) collect and analyze yield data. (France) Farmstar, AtFarm. VRT is used for seeding, fertilizer, and chemical application, adjusting rates based on field variability. Part of a package with new equipment, or because their agronomist/distributor/ Chamber of Agriculture recommended it.	To identify variability in fields and target inputs where they're most needed. Because of the promise of higher yields and lower costs.	 Data overload—farmers often collect more data than they know how to use. Learning curve for software. Lacking actionable insights. Integration between brands can be a challenge.
Mapping – soil characteristics	 Mapping providing an intra-plot diagnosis of all physical soil characteristics (water reserve content, mineral elements, etc.), linked to a yield map. Mainly used on a PC e.g., Interra-Scan, BeApi. Seen at agricultural trade shows specializing in machinery (e.g., SIMA) or recommended by distributors/ 	 Restore deficits and homogenize plots/optimize plot potential. The result is productivity gains and savings generated by adjusting the volumes applied (fertilizer and seeds). 	Some implementation difficulties at first but quickly resolved by the presence of a technician.

other experts.

The most advanced technology seemed to be more prevalent in the **US** and France

	How/why they use it	Benefits	Issues
Cloud Based Farm Management Platforms	 Platforms like Ag Leader AgFiniti, Cropwise, Climate FieldView, John Deere Operations Center, and Granular are used for data storage, analysis, and sharing. Data is uploaded from equipment or via email, and accessed on PC, tablet, or phone. 	 Some chose platform for ease of use, others based on recommendation. Centralizes data – integration with equipment and other data. Enables remote access. Supports recordkeeping, compliance, and decision-making. 	 Subscription costs. Data privacy concerns. Limited actionable insights. Some platforms are more user-friendly than others.
See & Spray and Other Camera Based Technologies (US)	Tools like John Deere's See & Spray use cameras and AI to identify and spray only weeds.	 Dealer recommendations and compatibility with existing sprayers were also factors. Reduces input costs. Environmental impact. Increases efficiency. 	High cost Proprietary systems.

The study is co-produced by Syngenta Group and IPSOS

© 2025 Syngenta. All rights reserved.

Editorial completion: October 2025

This publication is available on www.syngenta.com

Media Relations: media@syngentagroup.com

